

Results from the MINOS Experiment

Gregory Pawloski
Stanford University

On behalf of the MINOS Collaboration

MINOS Collaboration

140 Physicists from 28 institutions

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab • Harvard • Holy Cross • IIT • Indiana • Minnesota-Twin Cities • Minnesota-Duluth • Otterbein • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

Physics Goals of MINOS

Main Injector Neutrino Oscillation Search

The primary function of the MINOS experiment is to study neutrino oscillations at the atmospheric mass-squared splitting

Mass eigenstates are a linear combination of weak states

Oscillations at the Atmospheric Splitting

A v of one flavor will become a superposition of other flavors as it propagates

$$\begin{split} P(v_{\alpha} \rightarrow v_{\beta}) &= \delta_{\alpha\beta} \\ -4 \sum_{i>j} \mathcal{R}(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) sin^2 [1.27 \Delta m^2_{ij} (L/E)] \\ +2 \sum_{i>j} \mathcal{J}(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) sin[2.54 \Delta m^2_{ij} (L/E)] \end{split}$$

- $\bullet \Delta m^2_{atm} >> \Delta m^2_{sol}$
- $|\Delta m^2_{atm}| \sim 2.43 \times 10^{-3} \, eV^2$ •For E/L $\sim \Delta m^2_{atm}$ terms with that mass term dominate the probability
 - •MINOS L/E is tuned to this scale

For one mass scale dominance

$$P(v_{\alpha} \rightarrow v_{\beta}) \approx S_{\alpha\beta} \sin^2[1.27\Delta m^2(L/E)], \text{ for } \alpha \neq \beta$$

 $S_{\alpha\beta}$ term is related to components of the mixing matrix

The following analyses will be covered in this presentation

The following analyses will be covered in this presentation

- $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau}$ oscillations

 - Identify v flavor by finding muons from CC interactions
 - Measure:
 - $|\Delta m^2_{32}|$
 - $\sin^2(2\theta_{23})$
 - Rule out exotic models:
 - Decoherence
 - Decay

Neutrino Survival Probability

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m^2 L/E)$$

The following analyses will be covered in this presentation

- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscillations

 - Identify v flavor by finding antimuons from CC interactions
 - Measure:

 - $\sin^2(2\theta_{23})$
 - Test of CPT conservation and/or nonstandard interactions

$$P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}) \approx 1 - \sin^2(2\overline{\theta_{23}}) \sin^2(1.27\overline{\Delta m^2}L/E)$$

The following analyses will be covered in this presentation

- Sterile neutrinos: $\nu_{\mu} \rightarrow \nu_{s}$ oscillations
 - Identify active v by identifying NC interactions
 - Study oscillations through the disappearance of NC events
 - Sensitive to:
 - \bullet f_s , θ_{24} , θ_{34}

The following analyses will be covered in this presentation

- $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}$ oscillations
 - \bullet Study oscillations through the appearance of $\nu_{_{\! P}}$ CC events
 - Identify v flavor by finding electrons from CC interactions
 - Sensitive to:
 - $\sin^2(2\theta_{13})$
 - \bullet θ_{13} is the only unmeasured mixing angle in 3 flavored lepton sector
 - \bullet CP violating effects involve θ_{13} terms

 $P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(\theta_{23})\sin^{2}(2\theta_{13})\sin^{2}(1.27\Delta m^{2}L/E) + "\delta_{CP}$ -terms"+"mass hierarchy sensitive terms"+... All these terms are significant. Matters effects will alter the probability

How do we study these oscillations?

Long Baseline Accelerator Neutrinos

- Use a neutrino beam derived from 120 GeV protons from Fermilab's Main Injector
- Use 2 functionally identical detectors:
 - A Near Detector at Fermilab to measure the unoscillated beam composition and the energy spectrum
 - A Far Detector deep underground in the Soudan Mine in Minnesota to search for evidence of oscillations
 - Extrapolate Near Spectrum to the Far Detector to minimize uncertainties due to:
 - Cross section, flux, event detection and selection

NuMI (Neutrinos at the Main Injector) Beam

Protons are guided towards a graphite target producing a stream of mesons

2 magnetic horns are optimized to focus positively charged particles whose subsequent decays produce neutrinos

NuMI Beam Composition

- The resulting neutrino energy spectrum can be modified by adjusting the relative position of the target and the horns
- The default configuration is "Low Energy" which optimizes our L/E for the atmospheric mass-squared splitting

- CC interactions in the Near Detector are:
 - 92% ν_μ
 - 7% ν_μ
 - 1% $v_e + \overline{v_e}$

2 Detector Experiment

- Functionally identical tracking calorimeters with alternating layers of steel and scintillator
 - 2.54cm thick magnetized steel planes:
 - = 1.2 T
 - Muon Charge & Momentum Measurements
 - 1cm thick scintillator planes
 - Segmented into 4.1cm wide strips
 - Alternating planes rotated by 90°
 - Reconstruct 3D position
 - Sample Frequency: 1.4 radiation lengths
 - 1 GeV/c muon travels ~20 planes
 - Light transported through wavelength shifting and clear fibers
 - Signal read out through mutil-anode Hamamatsu PMTs
- Some differences due to flux considerations
 - Number of interactions per beam spill
 - Detector Size: 1kton (Near) vs 5.4kton (Far)
 - M64 (Near) vs M16 (Far) PMT
 - Multiplexing (Far)
 - Single Ended readout in Near

1.0 cm x 4.1 cm extruded polystyrene scintillator

Objects not to scale

Event Topologies

v_u CC Event

Long muon track & hadronic activity at vertex

NC Event

v_e CC Event

Compact event EM shower profile

Data Samples

Total Protons on NuMI Target

ν_μ Charged Current Disappearance with 3.36 x 10²⁰ POT

Measurements of $\sin^2(2\theta_{23})$, $|\Delta m^2_{32}|$

Published: Phys. Rev. Lett. 101 131802 (2008)

ν_μ CC Disappearance – The Purpose

- **a** Looking for a deficit of v_{μ} events in the Far Detector
 - Precision measurements of atmospheric Δm^2 and $\sin^2(2\theta)$
 - Test the neutrino oscillation hypothesis

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \frac{\sin^2 2\theta}{\sin^2 \left(\frac{1.27 \ln^2 L}{E}\right)}$$
, L=735 km

ν_μ CC Disappearance – The Selection

- ν_μ CC-like events are selected with a nearest neighbors (kNN) based algorithm with four inputs based on hits belonging to the track:
 - Track length (planes)
 - Mean pulse height/plane
 - Fluctuation in pulse height
 - Transverse track profile

ν_μ CC Disappearance – Near to Far Extrapolation

- The observed Near spectrum is extrapolated to the Far Detector
 - Use Monte Carlo to provide corrections due to energy smearing and acceptance
 - Encode pion decay kinematics & angular acceptance into a matrix used to transform the ND spectrum into the FD energy spectrum

v CC Disappearance – Systematic Uncertainties

The impact of different sources of systematic uncertainty are evaluated by fitting modified MC in place of the data

- The 3 largest sources of uncertainty are included as nuisance parameters in the oscillation fit
 - Far/Near Normalization (4%)
 - Absolute Hadronic Energy Scale (10.3%)
 - NC Contamination (50%)

v CC Disappearance – Oscillation Results

The resulting contour includes the 3 largest systematic uncertainties

Far Data consistent with two-flavor oscillations with $\chi^2/NDF = 90/97$

$$|\Delta m^2_{32}| = 2.43 \pm 0.13 \times 10^{-3} \text{eV}^2$$
 (68% C.L.)

Note results are constrained to physical region $\sin^2(2\theta_{23})<1$

v CC Disappearance – Alternative Models

Reconstructed neutrino energy (GeV)

Decay Model

$$P_{\mu\mu} = \left[\sin^2\theta + \cos^2\theta \exp(-\alpha L/2E)\right]^2$$

V. Barger et al., PRL82:2640(1999)

- 2/ndof = 104/97
- $\Delta \chi^2 = 14$ w.r.t. oscillation model
- disfavored at 3.7σ

Decoherence Model

$$P_{\mu\mu} = 1 - \frac{\sin^2 2\theta}{2} \left(1 - \exp\left(\frac{-\mu^2 L}{2E}\right) \right)$$

G.L. Fogli et al., PRD67:093006 (2003)

- $\Delta \chi^2 = 33$ w.r.t. oscillation model
- disfavored at 5.7σ

V_μ Charged Current Disappearance with 3.2 x 10²⁰ POT

Measurements of $\sin^2(2\theta_{23})$, $|\Delta m^2_{32}|$

To be submitted

Presented at FNAL Wine & Cheese 4 weeks ago

v CC Disappearance – The Purpose & Selection

- **a** Looking for a deficit of $\overline{v_{_{||}}}$ events in the Far Detector
 - Test if antineutrino oscillations are identical to neutrino oscillations
- Similar to previous $v_{_{\!{\scriptscriptstyle \parallel}}}$ analysis but we select positively charged tracks
- There are differences though
 - Flux is different (ie production in the decay pipe walls is significant)
 - $ightharpoonup \overline{v_{\mu}}$ CC events are only 7% of the beam
 - Hence charge misidentified muon and NC backgrounds are relatively larger
 - Developed extra cuts:
 - Likelihood based on track length, pulse height in track, pulse height in plane
 - Charge sign significance of the track fit
 - Relative angle: Does the track bend towards or away from the coil?

<u>ν_μ CC Disappearance</u> – Oscillation Results

Neutral Current Disappearance with 3.18 x 10²⁰ POT

Search for sterile neutrinos
Update to PRL [Phys. Rev. Lett. **101** 221804 (2008)]
To be submitted to PRD

Christopher Backhouse will cover this analysis during Session 7 tomorrow afternoon

NC Analysis – Near Spectrum

- Identify NC interactions by selecting showers with no muons
 - See Backhouse's talk for more details

- Extrapolate the selected Near spectrum to the Far in bins of visible energy
- Far Detector prediction depends on oscillation parameters
 - CC parameters set to values measured by the CC analysis
 - ν CC events will be a background to the NC selected events
 - $\ \ \, \bullet$ Consider 2 values of θ_{13} : 0 and the CHOOZ limit

NC Analysis – Far Results

Far spectrum is consistent with no deficit in the NC rate

Can measure probability to remain active v

$$R = \frac{\text{Data - Bkg}}{\text{Signal}} \qquad \text{Without } v_e \text{ appearance: } R = \frac{\text{Data - Bkg}}{\text{Signal}} \qquad \text{With } v_e \text{ appearance: } R = \frac{\text{Vithout } v_e}{\text{Signal}} = \frac{\text{Vithout } v_e}{\text{$$

Without v_e appearance: $R = 1.04 \pm 0.08(stat) \pm 0.07(sys)$ With v_e appearance: $R = 0.94 \pm 0.08(stat) \pm 0.07(sys)$

See Backhouse's talk to learn how fits to the spectrum can be interpreted within the context of a physical model

v_e CC Appearance Analysis with 3.14 x 10²⁰ POT

Limits on θ_{13}

To be submitted to PRL

v_e CC Appearance – Purpose and Selection

Searching for subdominant $v_{_{\mu}} \rightarrow v_{_{e}}$ oscillations

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx sin^{2}(\theta_{23}) \frac{sin^{2}(2\theta_{13})}{sin^{2}(1.27\Delta m^{2}L/E) + ...$$

- Constraining θ_{13} by looking for an excess of v_e -like events at the Far Detector
- Select electromagnetic shower topologies with neural network
- Background:
 - π^0 's generated via NC or deep-inelastic ν_μ -CC interactions
 - \bullet τ in FD from oscillations
 - 🥥 Non-oscillation beam v_e
- Measure background rate at Near
- Extrapolate to Far by component

v CC Appearance – Background Composition

- Note background components extrapolate differently
 - NC interaction unaffected by oscillations
 - CC interactions are affected
- Need to know background components
- Horn-on and Horn-off beam configurations have different NC/CC ratios
- Yields system of linear equations to solve for background components

v_e CC Appearance – Results

MINOS PRELIMINARY

Far Detector

- Far Background: 27±5(stat)±2(sys)
- Far Data: 35 events
- 1.5σ excess above background

Far Detector

- Set limits based on total number of events using Feldman-Cousins method
 - Best Fit and 90% C.L. contours are shown for both hierarchies
 - Assume MINOS best fit values for Δm²₃₂ and sin²(2θ₂₃)
 - Best fit at CHOOZ limit

MINOS PRELIMINARY

v_e CC Appearance – Future Prospects

Potential 90% C.L. Contours for 7.0x10²⁰ POT

If excess remains with more data

If excess goes away with more data

Blind analysis ongoing

Closing Remarks

- MINOS has analyzed 3x10²⁰ POT of beam data
 - More than 7x10²⁰ POT has been recorded for ongoing analyses
- Precision ν_μ CC disappearance measurement
 - $|\Delta m^2_{32}| = 2.43 \pm 0.13 \times 10^{-3} \text{ eV}^2$ (68% C.L.)
 - \circ sin²(2 θ_{23})>0.90 (90% C.L.)
- $ightharpoonup \overline{v_{\mu}}$ CC disappearance measurement excludes previously allowed regions of CPT violating phase space
 - Plan to have a dedicated antineutrino run starting this September
- Updated sterile neutrino search
 - See Backhouse's presentation to get the details
- 1.5 σ excess in v_e appearance channel
 - Interesting prospects for the analysis of 7x10²⁰ POT of beam data